FC2カウンター FPGAの部屋 SDx 2016.3 のプラグマによるハードウェアと性能の違い3

FPGAやCPLDの話題やFPGA用のツールの話題などです。 マニアックです。 日記も書きます。

FPGAの部屋

FPGAの部屋の有用と思われるコンテンツのまとめサイトを作りました。Xilinx ISEの初心者の方には、FPGAリテラシーおよびチュートリアルのページをお勧めいたします。

SDx 2016.3 のプラグマによるハードウェアと性能の違い3

SDx 2016.3 のプラグマによるハードウェアと性能の違い2”の続き。

前回は、SDS data access_pattern にSEQUENTIAL を指定したときのVivado のブロックデザインとその性能を調べた。今回は、SDS data access_pattern にRANDOM を指定したときと、以前 SDS data zero_copy を指定したら sds_alloc() を使用する必要があるとのことなので、やってみた。

lap_filter2.c の lap_filter_axim() の前に、

#pragma SDS data access_pattern(cam_fb:RANDOM, lap_fb:RANDOM)

を追加した。
SDx_v2016_3_87_170104.png

SDRelease でビルド後に生成された workspace\lap_filter2\SDRelease\_sds\p0\ipi のVivado 2016.3 プロジェクトを開いて結果を見た。
SDx_v2016_3_88_170104.png

このリソース使用量は、デフォルトの場合と同じだった。これがデフォルトの状態なのだと思う。

ブロックデザインを示す。
SDx_v2016_3_89_170104.png

デフォルトの場合と同じだ。これで検証は終わりにしよう。

次にSDS data zero_copy を指定したら sds_alloc() を使用する必要があるということなので、sds_alloc() を使用している”SDSoC 2015.2 でハードウェアとソフトウェアのラプラシアンフィルタの性能を比較した6(ハードウェア化3)”の lap_filter_tb.c と一部を入れ替えた。
SDx_v2016_3_90_170105.png

lap_filter2.c の方には、SDS data zero_copy を記述した。
SDx_v2016_3_91_170105.png

SDRelease でビルド後に生成された workspace\lap_filter2\SDRelease\_sds\p0\ipi のVivado 2016.3 プロジェクトを開いて結果を見た。
SDx_v2016_3_92_170105.png

ブロックデザインを示す。
SDx_v2016_3_93_170105.png

workspace\lap_filter2\SDRelease\sd_card の内容をMicro SD カードにコピーした。
ZYBO に挿入して電源ONした。
Linux が立ち上がった。
cd /mnt./lap_filter2.elf を実行した。
SDx_v2016_3_94_170105.png

この実装では、最初のハードウェアの実行時間が長いが、その後のハードウェアの実行時間の振れ幅が小さい。このくらいでないと使う気が起きないと思う。最初のハードウェアの実行では、キャッシュに読み込んでいないため実行時間が長くなったのかな?
ハードウェアの実行時間は約 3.23 ms で、ソフトウェアの実行時間は約 0.81 ms だった。
ハードウェアの実行時間/ソフトウェアの実行時間 = 約 4 倍、つまり、ハードウェアの性能はソフトウェアの 1/4 ということになる。

sds_alloc() を使用するように変更した lap_filter_tb.c を示す。

// Testbench of laplacian_filter.c
// BMPデータをハードウェアとソフトウェアで、ラプラシアン・フィルタを掛けて、それを比較する
//

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/time.h>

#include "sds_lib.h"

#include "bmp_header.h"

//#define HORIZONTAL_PIXEL_WIDTH    64
//#define VERTICAL_PIXEL_WIDTH    48
#define HORIZONTAL_PIXEL_WIDTH    100
#define VERTICAL_PIXEL_WIDTH    75
//#define HORIZONTAL_PIXEL_WIDTH    200
//#define VERTICAL_PIXEL_WIDTH    150
//#define HORIZONTAL_PIXEL_WIDTH    800
//#define VERTICAL_PIXEL_WIDTH    600

#define ALL_PIXEL_VALUE    (HORIZONTAL_PIXEL_WIDTH*VERTICAL_PIXEL_WIDTH)

int laplacian_fil_soft(int x0y0, int x1y0, int x2y0, int x0y1, int x1y1, int x2y1, int x0y2, int x1y2, int x2y2);
int conv_rgb2y_soft(int rgb);

int lap_filter_axim(int cam_fb[ALL_PIXEL_VALUE], int lap_fb[ALL_PIXEL_VALUE], int width, int height);    // hardware

void laplacian_filter_soft(volatile int *cam_fb, volatile int *lap_fb, long width, long height); // software

int main()
{
    int *s, *h;
    long x, y;
    BITMAPFILEHEADER bmpfhr; // BMPファイルのファイルヘッダ(for Read)
    BITMAPINFOHEADER bmpihr; // BMPファイルのINFOヘッダ(for Read)
    FILE *fbmpr, *fbmpw;
    int *hw_rd_bmp, *sw_rd_bmp, *hw_lapd, *sw_lapd;
    int blue, green, red;
    struct timeval start_time_hw, end_time_hw;
    struct timeval start_time_sw, end_time_sw;

    if ((fbmpr = fopen("test100x75.bmp""rb")) == NULL){ // test.bmp をオープン
        fprintf(stderr, "Can't open test.bmp by binary read mode\n");
        exit(1);
    }

    // bmpヘッダの読み出し
    fread(&bmpfhr.bfType, sizeof(char), 2, fbmpr);
    fread(&bmpfhr.bfSize, sizeof(long), 1, fbmpr);
    fread(&bmpfhr.bfReserved1, sizeof(short), 1, fbmpr);
    fread(&bmpfhr.bfReserved2, sizeof(short), 1, fbmpr);
    fread(&bmpfhr.bfOffBits, sizeof(long), 1, fbmpr);
    fread(&bmpihr, sizeof(BITMAPINFOHEADER), 1, fbmpr);

    // ピクセルを入れるメモリをアロケートする
    if ((hw_rd_bmp =(int *)sds_alloc(sizeof(int) * (bmpihr.biWidth * bmpihr.biHeight))) == NULL){
        fprintf(stderr, "Can't allocate rd_bmp memory\n");
        exit(1);
    }
    if ((sw_rd_bmp =(int *)malloc(sizeof(int) * (bmpihr.biWidth * bmpihr.biHeight))) == NULL){
        fprintf(stderr, "Can't allocate rd_bmp memory\n");
        exit(1);
    }
    if ((hw_lapd =(int *)sds_alloc(sizeof(int) * (bmpihr.biWidth * bmpihr.biHeight))) == NULL){
        fprintf(stderr, "Can't allocate hw_lapd memory\n");
        exit(1);
    }
    //rd_bmp = (int *)sds_mmap((void *)(0x80000000), sizeof(int) * (bmpihr.biWidth * bmpihr.biHeight), rd_bmp);
    //hw_lapd = (int *)sds_mmap((void *)(0x80000000+(ALL_PIXEL_VALUE*sizeof(int))), sizeof(int) * (bmpihr.biWidth * bmpihr.biHeight), hw_lapd);
    if ((sw_lapd =(int *)malloc(sizeof(int) * (bmpihr.biWidth * bmpihr.biHeight))) == NULL){
        fprintf(stderr, "Can't allocate sw_lapd memory\n");
        exit(1);
    }

    // rd_bmp にBMPのピクセルを代入。その際に、行を逆転する必要がある
    for (y=0; y<bmpihr.biHeight; y++){
        for (x=0; x<bmpihr.biWidth; x++){
            blue = fgetc(fbmpr);
            green = fgetc(fbmpr);
            red = fgetc(fbmpr);
            hw_rd_bmp[((bmpihr.biHeight-1)-y)*bmpihr.biWidth+x] = (blue & 0xff) | ((green & 0xff)<<8) | ((red & 0xff)<<16);
            sw_rd_bmp[((bmpihr.biHeight-1)-y)*bmpihr.biWidth+x] = (blue & 0xff) | ((green & 0xff)<<8) | ((red & 0xff)<<16);
        }
    }
    fclose(fbmpr);

    //lap_filter_axim(rd_bmp, hw_lapd, (int)bmpihr.biWidth, (int)bmpihr.biHeight);    // ダミー実行(キャッシュを読み込む)

    gettimeofday(&start_time_hw, NULL);
    lap_filter_axim(hw_rd_bmp, hw_lapd, (int)bmpihr.biWidth, (int)bmpihr.biHeight);    // ハードウェアのラプラシアン・フィルタ
    gettimeofday(&end_time_hw, NULL);

    gettimeofday(&start_time_sw, NULL);
    laplacian_filter_soft(sw_rd_bmp, sw_lapd, bmpihr.biWidth, bmpihr.biHeight);    // ソフトウェアのラプラシアン・フィルタ
    gettimeofday(&end_time_sw, NULL);

    // ハードウェアとソフトウェアのラプラシアン・フィルタの値のチェック
    for (y=0, h=hw_lapd, s=sw_lapd; y<bmpihr.biHeight; y++){
        for (x=0; x<bmpihr.biWidth; x++){
            if (*h != *s){
                printf("ERROR HW and SW results mismatch x = %ld, y = %ld, HW = %d, SW = %d\n", x, y, *h, *s);
                return(1);
            } else {
                h++;
                s++;
            }
        }
    }
    printf("Success HW and SW results match\n");
    if (end_time_hw.tv_usec < start_time_hw.tv_usec) {
        printf("lap_filter2 HW time = %ld.%06ld sec\n", end_time_hw.tv_sec - start_time_hw.tv_sec - 11000000 + end_time_hw.tv_usec - start_time_hw.tv_usec);
    }
    else {
        printf("lap_filter2 HW time = %ld.%06ld sec\n", end_time_hw.tv_sec - start_time_hw.tv_sec, end_time_hw.tv_usec - start_time_hw.tv_usec);
    }
    if (end_time_sw.tv_usec < start_time_sw.tv_usec) {
        printf("lap_filter2 SW time = %ld.%06ld sec\n", end_time_sw.tv_sec - start_time_sw.tv_sec - 11000000 + end_time_sw.tv_usec - start_time_sw.tv_usec);
    }
    else {
        printf("lap_filter2 SW time = %ld.%06ld sec\n", end_time_sw.tv_sec - start_time_sw.tv_sec, end_time_sw.tv_usec - start_time_sw.tv_usec);
    }

    // ハードウェアのラプラシアンフィルタの結果を temp_lap.bmp へ出力する
    if ((fbmpw=fopen("temp_lap.bmp""wb")) == NULL){
        fprintf(stderr, "Can't open temp_lap.bmp by binary write mode\n");
        exit(1);
    }
    // BMPファイルヘッダの書き込み
    fwrite(&bmpfhr.bfType, sizeof(char), 2, fbmpw);
    fwrite(&bmpfhr.bfSize, sizeof(long), 1, fbmpw);
    fwrite(&bmpfhr.bfReserved1, sizeof(short), 1, fbmpw);
    fwrite(&bmpfhr.bfReserved2, sizeof(short), 1, fbmpw);
    fwrite(&bmpfhr.bfOffBits, sizeof(long), 1, fbmpw);
    fwrite(&bmpihr, sizeof(BITMAPINFOHEADER), 1, fbmpw);

    // RGB データの書き込み、逆順にする
    for (y=0; y<bmpihr.biHeight; y++){
        for (x=0; x<bmpihr.biWidth; x++){
            blue = hw_lapd[((bmpihr.biHeight-1)-y)*bmpihr.biWidth+x] & 0xff;
            green = (hw_lapd[((bmpihr.biHeight-1)-y)*bmpihr.biWidth+x] >> 8) & 0xff;
            red = (hw_lapd[((bmpihr.biHeight-1)-y)*bmpihr.biWidth+x]>>16) & 0xff;

            fputc(blue, fbmpw);
            fputc(green, fbmpw);
            fputc(red, fbmpw);
        }
    }
    fclose(fbmpw);
    if (hw_rd_bmp) sds_free(hw_rd_bmp);
    if (sw_rd_bmp) free(sw_rd_bmp);
    if (hw_lapd) sds_free(hw_lapd);
    if (sw_lapd) free(sw_lapd);

    return(0);
}

void laplacian_filter_soft(volatile int *cam_fb, volatile int *lap_fb, long width, long height)
{
    unsigned int **line_buf;
    unsigned int *lap_buf;
    int x, y, i;
    int lap_fil_val;
    int a, b;
    int fl, sl, tl;

    // line_buf の1次元目の配列をアロケートする
    if ((line_buf =(unsigned int **)malloc(sizeof(unsigned int *) * 3)) == NULL){
        fprintf(stderr, "Can't allocate line_buf[3][]\n");
        exit(1);
    }

    // メモリをアロケートする
    for (i=0; i<3; i++){
        if ((line_buf[i]=(unsigned int *)malloc(sizeof(unsigned int) * width)) == NULL){
            fprintf(stderr, "Can't allocate line_buf[%d]\n", i);
            exit(1);
        }
    }

    if ((lap_buf=(unsigned int *)malloc(sizeof(unsigned int) * (width))) == NULL){
        fprintf(stderr, "Can't allocate lap_buf memory\n");
        exit(1);
    }

    // RGB値をY(輝度成分)のみに変換し、ラプラシアンフィルタを掛けた。
    for (y=0; y<height; y++){
        for (x=0; x<width; x++){
            if (y==0 || y==height-1){ // 縦の境界の時の値は0とする
                lap_fil_val = 0;
            }else if (x==0 || x==width-1){ // 横の境界の時も値は0とする
                lap_fil_val = 0;
            }else{
                if (y == 1 && x == 1){ // 最初のラインの最初のピクセルでは2ライン分の画素を読み出す
                    for (a=0; a<2; a++){ // 2ライン分
                        for (b=0; b<width; b++){ // ライン
                            line_buf[a][b] = cam_fb[(a*width)+b];
                            line_buf[a][b] = conv_rgb2y_soft(line_buf[a][b]);
                        }
                    }
                }
                if (x == 1) {    // ラインの最初なので、2つのピクセルを読み込む
                    for (b=0; b<2; b++){ // ライン
                        line_buf[(y+1)%3][b] = cam_fb[((y+1)*width)+b];
                        // (y+1)%3 は、使用済みのラインがに読み込む、y=2 の時 line[0], y=3の時 line[1], y=4の時 line[2]
                        line_buf[(y+1)%3][b] = conv_rgb2y_soft(line_buf[(y+1)%3][b]);
                    }
                }

                // 1つのピクセルを読み込みながらラプラシアン・フィルタを実行する
                line_buf[(y+1)%3][x+1] = cam_fb[((y+1)*width)+(x+1)];
                // (y+1)%3 は、使用済みのラインがに読み込む、y=2 の時 line[0], y=3の時 line[1], y=4の時 line[2]
                line_buf[(y+1)%3][x+1] = conv_rgb2y_soft(line_buf[(y+1)%3][x+1]);

                fl = (y-1)%3;    // 最初のライン, y=1 012, y=2 120, y=3 201, y=4 012
                sl = y%3;        // 2番めのライン
                tl = (y+1)%3;    // 3番目のライン
                lap_fil_val = laplacian_fil_soft(line_buf[fl][x-1], line_buf[fl][x], line_buf[fl][x+1], line_buf[sl][x-1], line_buf[sl][x], line_buf[sl][x+1], line_buf[tl][x-1], line_buf[tl][x], line_buf[tl][x+1]);
            }
            // ラプラシアンフィルタ・データの書き込み
            lap_fb[(y*width)+x] = (lap_fil_val<<16)+(lap_fil_val<<8)+lap_fil_val ;
        }
    }
    if(lap_buf) free(lap_buf);
    for (i=0; i<3; i++)
        if (line_buf[i]) free(line_buf[i]);
    if (line_buf) free(line_buf);
}

// RGBからYへの変換
// RGBのフォーマットは、{8'd0, R(8bits), G(8bits), B(8bits)}, 1pixel = 32bits
// 輝度信号Yのみに変換する。変換式は、Y =  0.299R + 0.587G + 0.114B
// "YUVフォーマット及び YUV<->RGB変換"を参考にした。http://vision.kuee.kyoto-u.ac.jp/~hiroaki/firewire/yuv.html
// 2013/09/27 : float を止めて、すべてint にした
int conv_rgb2y_soft(int rgb){
    int r, g, b, y_f;
    int y;

    b = rgb & 0xff;
    g = (rgb>>8) & 0xff;
    r = (rgb>>16) & 0xff;

    y_f = 77*r + 150*g + 29*b; //y_f = 0.299*r + 0.587*g + 0.114*b;の係数に256倍した
    y = y_f >> 8// 256で割る

    return(y);
}

// ラプラシアンフィルタ
// x0y0 x1y0 x2y0 -1 -1 -1
// x0y1 x1y1 x2y1 -1  8 -1
// x0y2 x1y2 x2y2 -1 -1 -1
int laplacian_fil_soft(int x0y0, int x1y0, int x2y0, int x0y1, int x1y1, int x2y1, int x0y2, int x1y2, int x2y2)
{
    int y;

    y = -x0y0 -x1y0 -x2y0 -x0y1 +8*x1y1 -x2y1 -x0y2 -x1y2 -x2y2;
    if (y<0)
        y = 0;
    else if (y>255)
        y = 255;
    return(y);
}

  1. 2017年01月06日 05:17 |
  2. SDSoC
  3. | トラックバック:0
  4. | コメント:0

コメント

コメントの投稿


管理者にだけ表示を許可する

トラックバック URL
http://marsee101.blog19.fc2.com/tb.php/3685-5fe133b0
この記事にトラックバックする(FC2ブログユーザー)